Anchored Hybrid Enrichment for Massively High-Throughput Phylogenomics
Author(s) -
Alan R. Lemmon,
Sandra A. Emme,
Emily Moriarty Lemmon
Publication year - 2012
Publication title -
systematic biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.128
H-Index - 182
eISSN - 1076-836X
pISSN - 1063-5157
DOI - 10.1093/sysbio/sys049
Subject(s) - biology , phylogenomics , phylogenetic tree , clade , massive parallel sequencing , evolutionary biology , sanger sequencing , dna sequencing , computational biology , phylogenetics , locus (genetics) , amplicon , genome , genomics , genetics , gene , polymerase chain reaction
The field of phylogenetics is on the cusp of a major revolution, enabled by new methods of data collection that leverage both genomic resources and recent advances in DNA sequencing. Previous phylogenetic work has required labor-intensive marker development coupled with single-locus polymerase chain reaction and DNA sequencing on clade-by-clade and locus-by-locus basis. Here, we present a new, cost-efficient, and rapid approach to obtaining data from hundreds of loci for potentially hundreds of individuals for deep and shallow phylogenetic studies. Specifically, we designed probes for target enrichment of >500 loci in highly conserved anchor regions of vertebrate genomes (flanked by less conserved regions) from five model species and tested enrichment efficiency in nonmodel species up to 508 million years divergent from the nearest model. We found that hybrid enrichment using conserved probes (anchored enrichment) can recover a large number of unlinked loci that are useful at a diversity of phylogenetic timescales. This new approach has the potential not only to expedite resolution of deep-scale portions of the Tree of Life but also to greatly accelerate resolution of the large number of shallow clades that remain unresolved. The combination of low cost (~1% of the cost of traditional Sanger sequencing and ~3.5% of the cost of high-throughput amplicon sequencing for projects on the scale of 500 loci × 100 individuals) and rapid data collection (~2 weeks of laboratory time) are expected to make this approach tractable even for researchers working on systems with limited or nonexistent genomic resources.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom