z-logo
open-access-imgOpen Access
Relaxed Molecular Clocks, the Bias–Variance Trade-off, and the Quality of Phylogenetic Inference
Author(s) -
Joel O. Wertheim,
Michael J. Sanderson,
Michael Worobey,
Adam Bjork
Publication year - 2009
Publication title -
systematic biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.128
H-Index - 182
eISSN - 1076-836X
pISSN - 1063-5157
DOI - 10.1093/sysbio/syp072
Subject(s) - molecular clock , inference , phylogenetic tree , bayesian inference , biology , bayesian probability , evolutionary biology , divergence (linguistics) , bayes' theorem , phylogenetics , fiducial inference , sequence (biology) , statistics , bayesian statistics , genetics , artificial intelligence , computer science , mathematics , gene , linguistics , philosophy
Because a constant rate of DNA sequence evolution cannot be assumed to be ubiquitous, relaxed molecular clock inference models have proven useful when estimating rates and divergence dates. Furthermore, it has been recently suggested that using relaxed molecular clocks may provide superior accuracy and precision in phylogenetic inference compared with traditional time-free methods that do not incorporate a molecular clock. We perform a simulation study to determine if assuming a relaxed molecular clock does indeed improve the quality of phylogenetic inference. We analyze sequence data simulated under various rate distributions using relaxed-clocks, strict-clocks, and time-free Bayesian phylogenetic inference models. Our results indicate that no difference exists in the quality of phylogenetic inference between assuming a relaxed molecular clock and making no assumption about the clock-likeness of sequence evolution. This pattern is likely due to the bias-variance trade-off inherent in this type of phylogenetic inference. We also compared the quality of inference between Bayesian and maximum likelihood time-free inference models and found them to be qualitatively similar.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom