Rosa26 docking sites for investigating genetic circuit silencing in stem cells
Author(s) -
Michael C. Fitzgerald,
Mark Livingston,
Chelsea Gibbs,
Tara L. Deans
Publication year - 2020
Publication title -
synthetic biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.769
H-Index - 8
ISSN - 2397-7000
DOI - 10.1093/synbio/ysaa014
Subject(s) - induced pluripotent stem cell , biology , sodium butyrate , gene silencing , genetic screen , stem cell , microbiology and biotechnology , genetics , computational biology , cell culture , embryonic stem cell , gene , phenotype
Approaches in mammalian synthetic biology have transformed how cells can be programmed to have reliable and predictable behavior, however, the majority of mammalian synthetic biology has been accomplished using immortalized cell lines that are easy to grow and easy to transfect. Genetic circuits that integrate into the genome of these immortalized cell lines remain functional for many generations, often for the lifetime of the cells, yet when genetic circuits are integrated into the genome of stem cells gene silencing is observed within a few generations. To investigate the reactivation of silenced genetic circuits in stem cells, the Rosa26 locus of mouse pluripotent stem cells was modified to contain docking sites for site-specific integration of genetic circuits. We show that the silencing of genetic circuits can be reversed with the addition of sodium butyrate, a histone deacetylase inhibitor. These findings demonstrate an approach to reactivate the function of genetic circuits in pluripotent stem cells to ensure robust function over many generations. Altogether, this work introduces an approach to overcome the silencing of genetic circuits in pluripotent stem cells that may enable the use of genetic circuits in pluripotent stem cells for long-term function.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom