Neural basis of conditional cooperation
Author(s) -
Shinsuke Suzuki,
Kazuhisa Niki,
Shigeru Fujisaki,
Eizo Akiyama
Publication year - 2010
Publication title -
social cognitive and affective neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.229
H-Index - 103
eISSN - 1749-5024
pISSN - 1749-5016
DOI - 10.1093/scan/nsq042
Subject(s) - psychology , cognition , dilemma , dorsolateral prefrontal cortex , social dilemma , functional magnetic resonance imaging , prefrontal cortex , prisoner's dilemma , cognitive psychology , neuroeconomics , social psychology , neuroscience , cognitive science , epistemology , philosophy
Cooperation among genetically unrelated individuals is a fundamental aspect of society, but it has been a longstanding puzzle in biological and social sciences. Recently, theoretical studies in biology and economics showed that conditional cooperation-cooperating only with those who have exhibited cooperative behavior-can spread over a society. Furthermore, experimental studies in psychology demonstrated that people are actually conditional cooperators. In this study, we used functional magnetic resonance imaging to investigate the neural system underlying conditional cooperation by scanning participants during interaction with cooperative, neutral and non-cooperative opponents in prisoner's dilemma games. The results showed that: (i) participants cooperated more frequently with both cooperative and neutral opponents than with non-cooperative opponents; and (ii) a brain area related to cognitive inhibition of pre-potent responses (right dorsolateral prefrontal cortex) showed greater activation, especially when participants confronted non-cooperative opponents. Consequently, we suggest that cognitive inhibition of the motivation to cooperate with non-cooperators drives the conditional behavior.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom