z-logo
open-access-imgOpen Access
Antioxidant biocompatible composite collagen dressing for diabetic wound healing in rat model
Author(s) -
Bei Qian,
Jialun Li,
Ke Guo,
Nengqiang Guo,
Aimei Zhong,
Jie Yang,
Jiecong Wang,
Peng Xiao,
Jiaming Sun,
Lingyun Xiong
Publication year - 2021
Publication title -
regenerative biomaterials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.166
H-Index - 25
ISSN - 2056-3426
DOI - 10.1093/rb/rbab003
Subject(s) - wound healing , antioxidant , superoxide dismutase , chemistry , glutathione peroxidase , angiogenesis , pharmacology , oxidative stress , biocompatibility , reactive oxygen species , catalase , streptozotocin , biochemistry , diabetes mellitus , medicine , surgery , cancer research , endocrinology , organic chemistry
Associated with persistent oxidative stress, altered inflammatory responses, poor angiogenesis and epithelization, wound healing in diabetic patients is impaired. N-acetylcysteine (NAC) is reported to resist excess reactive oxygen species (ROS) production, prompt angiogenesis and maturation of the epidermis. Studies have revealed that graphene oxide (GO) can regulate cellular behavior and form cross-links with naturally biodegradable polymers such as collagen (COL) to construct composite scaffolds. Here, we reported a COL-based implantable scaffold containing a mixture of GO capable of the sustained delivery of NAC to evaluate the wound healing in diabetic rats. The morphological, physical characteristics, biocompatibility and NAC release profile of the GO-COL-NAC (GCN) scaffold were evaluated in vitro . Wound healing studies were performed on a 20 mm dorsal full-skin defect of streptozotocin (STZ)-induced diabetic rats. The injured skin tissue was removed at the 18th day post-surgery for histological analysis and determination of glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD) activity. In diabetic rats, we confirmed that the GCN scaffold presented a beneficial effect in enhancing the wound healing process. Additionally, due to the sustained release of NAC, the scaffold may potentially induce the antioxidant defense system, upregulating the expression levels of the antioxidant enzymes in the wound tissue. The findings revealed that the antioxidant biocompatible composite collagen dressing could not only deliver NAC in situ for ROS inhibition but also promote the wound healing process. This scaffold with valuable therapy potential might enrich the approaches for surgeon in diabetic wound treatment in the future.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom