z-logo
open-access-imgOpen Access
An update on passive transport in and out of plant cells
Author(s) -
Melissa Tomkins,
A. P. HUGHES,
Richard J. Morris
Publication year - 2021
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1093/plphys/kiab406
Subject(s) - plasmodesma , energy transport , focus (optics) , plant development , nanotechnology , membrane , biochemical engineering , computer science , physics , chemistry , engineering , biology , materials science , engineering physics , botany , cell wall , biochemistry , gene , optics
Transport across membranes is critical for plant survival. Membranes are the interfaces at which plants interact with their environment. The transmission of energy and molecules into cells provides plants with the source material and power to grow, develop, defend, and move. An appreciation of the physical forces that drive transport processes is thus important for understanding the plant growth and development. We focus on the passive transport of molecules, describing the fundamental concepts and demonstrating how different levels of abstraction can lead to different interpretations of the driving forces. We summarize recent developments on quantitative frameworks for describing diffusive and bulk flow transport processes in and out of cells, with a more detailed focus on plasmodesmata, and outline open questions and challenges.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom