Phytoplankton nutritional quality is altered by shifting Si:N ratios and selective grazing
Author(s) -
Kriste MakareviciuteFichtner,
Birte Matthiessen,
Heike K. Lotze,
Ulrich Sommer
Publication year - 2021
Publication title -
journal of plankton research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.87
H-Index - 93
eISSN - 1464-3774
pISSN - 0142-7873
DOI - 10.1093/plankt/fbab034
Subject(s) - phytoplankton , plankton , copepod , diatom , zooplankton , grazing , biology , eicosapentaenoic acid , docosahexaenoic acid , polyunsaturated fatty acid , nutrient , environmental chemistry , zoology , ecology , chemistry , fatty acid , biochemistry , crustacean
Diatoms often dominate phytoplankton in temperate, polar and upwelling regions. Decreases in silicate availability or silicon to nitrogen (Si:N) ratios may induce silicon limitation in diatoms and lower their proportion within phytoplankton communities. The effects of such changes on the nutritional quality of phytoplankton are not well understood. To examine how changing Si:N ratios affect plankton nutritional value, we applied a range of Si:N ratios on a natural plankton community and manipulated grazing pressure to assess top-down effects of copepod selective grazing. Diatom proportion in phytoplankton increased with increasing Si:N ratios and so did phytoplankton nutritional quality in terms of major fatty acid concentrations, such as polyunsaturated fatty acids, docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids. However, stoichiometric quality (carbon to nitrogen and carbon to phosphorus ratios), DHA:EPA and omega 3:6 (ω3:ω6) ratios declined with increasing Si:N ratios, suggesting that proportions between essential compounds in copepod diet may be more favorable in lowered Si:N ratios. Copepods had a negative effect on DHA contents, DHA:EPA and ω3:ω6 ratios, indicating possible selective grazing on more nutritious plankton. Our findings show that declining silicate concentrations can affect stoichiometric and biochemical quality of phytoplankton, which copepods can also moderate by selective grazing.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom