z-logo
open-access-imgOpen Access
Alternative Splicing and Cross-Talk with Light Signaling
Author(s) -
You-Liang Cheng,
ShihLong Tu
Publication year - 2018
Publication title -
plant and cell physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.975
H-Index - 152
eISSN - 1471-9053
pISSN - 0032-0781
DOI - 10.1093/pcp/pcy089
Subject(s) - biology , proteome , adaptation (eye) , computational biology , mechanism (biology) , rna splicing , signal transduction , alternative splicing , arabidopsis , microbiology and biotechnology , gene , rna , evolutionary biology , genetics , neuroscience , messenger rna , physics , quantum mechanics , mutant
Alternative splicing (AS) is the main source of proteome diversity that in large part contributes to the complexity of eukaryotes. Recent global analysis of AS with RNA sequencing has revealed that AS is prevalent in plants, particularly when responding to environmental changes. Light is one of the most important environmental factors for plant growth and development. To optimize light absorption, plants evolve complex photoreceptors and signaling systems to regulate gene expression and biological processes in the cell. Genome-wide analyses have shown that light induces intensive AS in plants. However, the biochemical mechanisms of light regulating AS remain poorly understood. In this review, we aim to discuss recent progress in investigating the functions of AS, discovery of cross-talk between AS and light signaling, and the potential mechanism of light-regulated AS. Understanding how light signaling regulates the efficiency of AS and the biological significance of light-regulated AS in plant systems will provide new insights into the adaptation of plants to their environment and, ultimately, crop improvement.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom