Apple SVP Family MADS-Box Proteins and the Tomato Pedicel Abscission Zone Regulator JOINTLESS have Similar Molecular Activities
Author(s) -
Toshitsugu Nakano,
Hiroki Kato,
Yoko Shima,
Yasuhiro Ito
Publication year - 2015
Publication title -
plant and cell physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.975
H-Index - 152
eISSN - 1471-9053
pISSN - 0032-0781
DOI - 10.1093/pcp/pcv034
Subject(s) - pedicel , abscission , biology , ectopic expression , mads box , mutant , microbiology and biotechnology , gene , expansin , effector , botany , genetics , arabidopsis , gene expression
Pedicel abscission occurs widely in fruit-bearing plants to detach ripe, senescent or diseased organs, and regulation of abscission plays a substantial role in regulating yield and quality in fruit crops. In tomato, development of pedicel abscission zones (AZs) requires the MADS-box genes JOINTLESS (J), MACROCALYX (MC) and SlMBP21. In other plants, however, the involvement of MADS-box genes in pedicel abscission remains unclear. Here, we used genetic and biochemical methods to characterize apple J homologs in the context of the regulation of abscission in tomato. We identified three genes encoding two J homologs, MdJa and MdJb. Similarly to J, MdJa and MdJb interacted with MC and SlMBP21, but their interactions differed slightly: like J, MdJb formed a multimer (probably a tetramer) with SlMBP21; however, MdJa formed multimers to a lesser extent. Ectopic expression of MdJb in a J-deficient tomato mutant restored development of functional pedicel AZs, but ectopic expression of MdJa did not complement j mutants. Introduction of MdJb also restored expression of J-dependent genes in the mutant, such as genes for polygalacturonase, cellulase and AZ-specific transcription factors. These results suggest a potentially conserved mechanism of pedicel AZ development in apple and other plants, regulated by MADS-box transcription factors.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom