z-logo
open-access-imgOpen Access
The Involvement of Dual Mechanisms of Photoinactivation of Photosystem II in Capsicum annuum L. Plants
Author(s) -
Riichi Oguchi,
Ichiro Terashima,
Wah Soon Chow
Publication year - 2009
Publication title -
plant and cell physiology/plant and cell physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.975
H-Index - 152
eISSN - 1471-9053
pISSN - 0032-0781
DOI - 10.1093/pcp/pcp123
Subject(s) - photosystem ii , photosynthesis , biophysics , quenching (fluorescence) , photoinhibition , chemistry , photochemistry , light energy , botany , biology , fluorescence , physics , optics
For plants, light is an indispensable resource. However, it also causes a loss of photosynthetic activity associated with photoinactivation of photosystem II (PSII). In studies of the mechanism of this photoinactivation, there are two conflicting hypotheses at present. One is that excess energy received by leaves, being neither utilized by photosynthesis nor dissipated safely in non-photochemical quenching, causes the photoinactivation. The other involves a two-step mechanism in which excitation of Mn by photons is the primary cause. In the former hypothesis, photoinactivation of PSII should not occur in low light that provides little excess energy, but in the latter hypothesis it should. Therefore, we tested these two hypotheses in different irradiances. We used a system that can measure the fraction of functional PSII complexes under natural conditions and over a long period in intact leaves, which were attached to a plant treated with lincomycin taken up via the roots. The leaves were photoinactivated in low, medium or high light (30, 60 or 950 micromol m(-2) s(-1)) with white, blue, green or red light-emitting diode arrays. Our results showed that the extent of photoinactivation per photon exposure was higher in high light than in low light, consistent with the abundance of excess energy. However, photoinactivation did occur in low light with little excess energy, and blue light caused the greatest extent of photoinactivation followed by white, green and red light in this order, an order that can be predicted from the Mn absorbance spectrum. These results suggest that both mechanisms occur in the photoinactivation process.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here