TaqMan probe array for quantitative detection of DNA targets
Author(s) -
Heping Liu,
Hong Wang,
Zhiyang Shi,
Hua Wang,
Chaoyong Yang,
Spering Silke,
Weihong Tan,
Zuhong Lu
Publication year - 2006
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/gnj006
Subject(s) - taqman , fluorophore , nucleic acid , biology , förster resonance energy transfer , dna microarray , microbiology and biotechnology , fluorescence , dna , real time polymerase chain reaction , nuclease , molecular beacon , hybridization probe , protein array analysis , nucleic acid quantitation , computational biology , gene , biochemistry , gene expression , oligonucleotide , physics , quantum mechanics
To date real-time quantitative PCR and gene expression microarrays are the methods of choice for quantification of nucleic acids. Herein, we described a unique fluorescence resonance energy transfer-based microarray platform for real-time quantification of nucleic acid targets that combines advantages of both and reduces their limitations. A set of 3' amino-modified TaqMan probes were designed and immobilized on a glass slide composing a regular microarray pattern, and used as probes in the consecutive PCR carried out on the surface. During the extension step of the PCR, 5' nuclease activity of DNA polymerase will cleave quencher dyes of the immobilized probe in the presence of nucleic acids targets. The increase of fluorescence intensities generated by the change in physical distance between reporter fluorophore and quencher moiety of the probes were collected by a confocal scanner. Using this new approach we successfully monitored five different pathogenic genomic DNAs and analyzed the dynamic characteristics of fluorescence intensity changes on the TaqMan probe array. The results indicate that the TaqMan probe array on a planar glass slide monitors DNA targets with excellent specificity as well as high sensitivity. This set-up offers the great advantage of real-time quantitative detection of DNA targets in a parallel array format
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom