Sequence dependence of cross-hybridization on short oligo microarrays
Author(s) -
ChaoLiang Wu
Publication year - 2005
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/gni082
Subject(s) - biology , dna microarray , in situ hybridization , spurious relationship , microarray , nucleic acid thermodynamics , genetics , microbiology and biotechnology , gene , computational biology , base sequence , gene expression , machine learning , computer science
One of the critical problems in the short oligo microarray technology is how to deal with cross-hybridization that produces spurious data. Little is known about the details of cross-hybridization effect at molecular level. Here, we report a free energy analysis of cross-hybridization on short oligo microarrays using data from a spike-in study. Our analysis revealed that cross-hybridization on the arrays is mostly caused by oligo fragments with a run of 10–16 nt complementary to the probes. Mismatches were estimated to be energetically much more costly in cross-hybridization than that in gene-specific hybridization, implying that the sources of cross-hybridization must be very different between a PM–MM probe pair. Consequently, it is unreliable to use MM probe signal to track cross-hybridizing signal on a corresponding PM probe. Our results also showed that the oligo fragments tend to bind to the 5′ ends of the probes, and are rarely seen at the 3′ ends. These results are useful for microarray design and data analysis
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom