z-logo
open-access-imgOpen Access
Discovery of active proteins directly from combinatorial randomized protein libraries without display, purification or sequencing: identification of novel zinc finger proteins
Author(s) -
Marcus D. Hughes
Publication year - 2005
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/gni031
Subject(s) - zinc finger , biology , computational biology , genomic library , dna , dna sequencing , dna binding protein , gene , genetics , peptide sequence , biochemistry , microbiology and biotechnology , transcription factor
We have successfully linked protein library screening directly with the identification of active proteins, without the need for individual purification, display technologies or physical linkage between the protein and its encoding sequence. By using ‘MAX’ randomization we have rapidly constructed 60 overlapping gene libraries that encode zinc finger proteins, randomized variously at the three principal DNA-contacting residues. Expression and screening of the libraries against five possible target DNA sequences generated data points covering a potential 40 000 individual interactions. Comparative analysis of the resulting data enabled direct identification of active proteins. Accuracy of this library analysis methodology was confirmed by both in vitro and in vivo analyses of identified proteins to yield novel zinc finger proteins that bind to their target sequences with high affinity, as indicated by low nanomolar apparent dissociation constants

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom