z-logo
open-access-imgOpen Access
Genomic DNA standards for gene expression profiling in Mycobacterium tuberculosis
Author(s) -
Adel M. Talaat
Publication year - 2002
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/gnf103
Subject(s) - biology , dna microarray , normalization (sociology) , gene expression , gene , genetics , gene expression profiling , genomic dna , computational biology , dna , genome , rna , sociology , anthropology
A fundamental problem in DNA microarray analysis is the lack of a common standard to compare the expression levels of different samples. Several normalization protocols have been proposed to overcome variables inherent in this technology. As yet, there are no satisfactory methods to exchange gene expression data among different research groups or to compare gene expression values under different stimulus-response profiles. We have tested a normalization procedure based on comparing gene expression levels to the signals generated from hybridizing genomic DNA (genomic normalization). This procedure was applied to DNA microarrays of Mycobacterium tuberculosis using RNA extracted from cultures growing to the logarithmic and stationary phases. The applied normalization procedure generated reproducible measurements of expression level for 98% of the putative mycobacterial ORFs, among which 5.2% were significantly changed comparing the logarith- mic to stationary growth phase. Additionally, analy- sis of expression levels of a subset of genes by real time PCR technology revealed an agreement in expression of 90% of the examined genes when genomic DNA normalization was applied instead of 29-68% agreement when RNA normalization was used to measure the expression levels in the same set of RNA samples. Further examination of micro- array expression levels displayed clusters of genes differentially expressed between the logarithmic, early stationary and late stationary growth phases. We conclude that genomic DNA standards offer advantages over conventional RNA normalization procedures and can be adapted for the investigation of microbial genomes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom