z-logo
open-access-imgOpen Access
Ferrocene conjugates of dUTP for enzymatic redox labelling of DNA
Author(s) -
Wjatschesslaw A. Wlassoff,
Garry C. King
Publication year - 2002
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/gnf058
Subject(s) - biology , polymerase , dna polymerase , biochemistry , dna , microbiology and biotechnology
Two ferrocene-labelled analogues of dTTP, 5-(3-ferrocenecarboxamidopropenyl-1) 2'-deoxyuridine 5'-triphosphate (Fc1-dUTP) and 5-(3-ferroceneacet-amidopropenyl-1) 2'-deoxyuridine 5'-triphosphate (Fc2-dUTP) have been produced to demonstrate the incorporation of redox labels into DNA by polymerases. Cyclic voltammetry indicates that the ferrocenyl moieties display reversible redox behaviour in aqueous buffer with E(1/2) values of 398 (Fc1-dUTP) and 260 mV (Fc2-dUTP) versus Ag/AgCl. Primer extension by the proofreading enzymes Klenow fragment and T4 DNA polymerase shows that Fc1-dUTP is efficiently incorporated into DNA during synthesis, including incorporation of two successive modified nucleotides. Production of a 998 bp amplicon by Tth DNA polymerase demonstrates that Fc1-dUTP is also a satisfactory substrate for PCR. Despite its structural similarity, Fc2-dUTP acts predominantly as a terminator with the polymerases employed here. UV melting analysis of a 37mer duplex containing five Fc1-dU residues reveals that the labelled nucleotide introduces only a modest helix destabilisation, with T(m) = 71 versus 75 degrees C for the corresponding natural construct. Modified DNA is detected at femtomole levels using a HPLC system with a coulometric detector. The availability of simple and effective enzymatic labelling strategies should promote the further development of electrochemical detection in nucleic acid analysis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here