z-logo
open-access-imgOpen Access
Identifying DNA-binding proteins using structural motifs and the electrostatic potential
Author(s) -
Hugh Shanahan
Publication year - 2004
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/gkh803
Subject(s) - helix turn helix , biology , dna binding protein , structural motif , dna , sequence motif , motif (music) , computational biology , helix (gastropod) , protein structure , genetics , biochemistry , transcription factor , gene , ecology , physics , snail , acoustics
Robust methods to detect DNA-binding proteins from structures of unknown function are important for structural biology. This paper describes a method for identifying such proteins that (i) have a solvent accessible structural motif necessary for DNA-binding and (ii) a positive electrostatic potential in the region of the binding region. We focus on three structural motifs: helix-turn-helix (HTH), helix-hairpin-helix (HhH) and helix-loop-helix (HLH). We find that the combination of these variables detect 78% of proteins with an HTH motif, which is a substantial improvement over previous work based purely on structural templates and is comparable to more complex methods of identifying DNA-binding proteins. Similar true positive fractions are achieved for the HhH and HLH motifs. We see evidence of wide evolutionary diversity for DNA-binding proteins with an HTH motif, and much smaller diversity for those with an HhH or HLH motif.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom