z-logo
open-access-imgOpen Access
Structure-specific DNA binding and bipolar helicase activities of PcrA
Author(s) -
Syam P. Anand
Publication year - 2004
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/gkh641
Subject(s) - helicase , biology , dna , microbiology and biotechnology , duplex (building) , rna helicase a , biophysics , biochemistry , gene , rna
PcrA is an essential helicase in Gram-positive bacteria, but its precise role in cellular DNA metabolism is currently unknown. The Staphylococcus aureus PcrA helicase has both 5'-->3' and 3'-->5' helicase activities. In this work, we have studied the binding of S.aureus PcrA to a variety of DNA substrates that represent intermediates in DNA replication, repair, recombination and transcription. PcrA bound poorly or not at all to single-stranded DNA, double-stranded DNA with blunt ends, partially double-stranded DNA containing fork and bubble structures, and duplex DNA substrates containing either 5' or 3' single-stranded oligo dT tails. Interestingly, PcrA bound with high affinity to partially duplex DNA containing hairpin structures adjacent to a 6 nt long 5' single-stranded region and one unpaired nucleotide (flap) at the 3' end. However, PcrA did not detectably bind to partial duplexes with folded regions adjacent to a 6 nt long 3' single-stranded tail (with or without a 1 nt flap at the 5' end). PcrA showed moderate helicase activity with partially double-stranded DNAs containing 3' or 5' single-stranded oligo dT tails, the 3'-->5' helicase activity being more efficient than its 5'-->3' helicase activity. Interestingly, PcrA showed maximal helicase activity with substrates containing folded structures and 5' single-stranded tails, suggesting that its 5'-->3' helicase activity is greatly stimulated in the presence of specific structures. However, the 3'-->5' helicase activity of PcrA did not appear to be affected by the presence of folded substrates containing 3' single-stranded tails. Our data indicate that PcrA may recognize DNA substrates with specific structures in vivo and its 5'-->3' and 3'-->5' helicase activities may be involved in distinct cellular processes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom