z-logo
open-access-imgOpen Access
New challenges in gene expression data analysis and the extended GEPAS
Author(s) -
Javier Herrero,
Juan M. Vaquerizas,
Fátima AlShahrour,
Lucía Conde,
Álvaro Mateos,
Ramón DíazUriarte,
Joaquı́n Dopazo
Publication year - 2004
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/gkh421
Subject(s) - biology , microarray databases , cluster analysis , microarray analysis techniques , computational biology , pipeline (software) , gene , gene ontology , microarray , gene chip analysis , bioinformatics , data mining , data science , genetics , gene expression , computer science , artificial intelligence , programming language
Since the first papers published in the late nineties, including, for the first time, a comprehensive analysis of microarray data, the number of questions that have been addressed through this technique have both increased and diversified. Initially, interest focussed on genes coexpressing across sets of experimental conditions, implying, essentially, the use of clustering techniques. Recently, however, interest has focussed more on finding genes differentially expressed among distinct classes of experiments, or correlated to diverse clinical outcomes, as well as in building predictors. In addition to this, the availability of accurate genomic data and the recent implementation of CGH arrays has made mapping expression and genomic data on the chromosomes possible. There is also a clear demand for methods that allow the automatic transfer of biological information to the results of microarray experiments. Different initiatives, such as the Gene Ontology (GO) consortium, pathways databases, protein functional motifs, etc., provide curated annotations for genes. Whereas many resources on the web focus mainly on clustering methods, GEPAS has evolved to cope with the aforementioned new challenges that have recently arisen in the field of microarray data analysis. The web-based pipeline for microarray gene expression data, GEPAS, is available at http://gepas.bioinfo.cnio.es.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom