z-logo
open-access-imgOpen Access
Global mapping of nucleic acid conformational space: dinucleoside monophosphate conformations and transition pathways among conformational classes
Author(s) -
Gregory E. Sims
Publication year - 2003
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/gkg750
Subject(s) - nucleic acid , biology , dna , rna , crystallography , transfer rna , nucleotide , conformational change , bent molecular geometry , biophysics , biochemistry , chemistry , gene , organic chemistry
A global conformational space of 6253 dinucleoside monophosphate (DMP) units consisting of RNA and DNA (free and protein/drug-bound) was 'mapped' using high resolution crystal structures cataloged in the Nucleic Acid Database (NDB). The torsion angles of each DMP were clustered in a reduced three-dimensional space using a classical multi-dimensional scaling method. The mapping of the conformational space reveals nine primary clusters which distinguish among the common A-, B- and Z-forms and their various substates, plus five secondary clusters for kinked or bent structures. Conformational relationships and possible transitional pathways among the substates are also examined using the conformational states of DNA and RNA bound with proteins or drugs as potential pathway intermediates.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom