z-logo
open-access-imgOpen Access
Repairing the Sickle Cell mutation. III. Effect of irradiation wavelength on the specificity and type of photoproduct formed by a 3'-terminal psoralen on a third strand directed to the mutant base pair
Author(s) -
Steven L. Broitman,
Olga Amosova,
Jacques R. Fresco
Publication year - 2003
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/gkg658
Subject(s) - psoralen , mutant , biology , dna , wild type , mutation , pyrimidine dimer , microbiology and biotechnology , pyrimidine , biophysics , biochemistry , gene , dna repair
Using a psoralen delivery system mediated by a DNA third strand that binds selectively to linear target duplexes immediately downstream from the Sickle Cell beta-globin gene mutation and the comparable wild-type beta-globin gene sequence, the kinetics of formation and yield of psoralen monoadducts and crosslinks with pyrimidine residues at and near the mutant base pair site and its wild-type counterpart were determined. By exploiting irradiation specificities at 300, 365 and 419 nm, it was possible to evaluate the orientation equilibrium of 3'-linked intercalated psoralen and to develop conditions that lead to preferential formation of each type of photoproduct in both the mutant and wild-type sequences. This makes possible the preparation of each type of photoproduct for use as a substrate for DNA repair. In this way, the base pair change(s) that each generates can be established.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here