Relaxed 3D genome conformation facilitates the pluripotent to totipotent-like state transition in embryonic stem cells
Author(s) -
Yezhang Zhu,
Jiali Yu,
Jiahui Gu,
Chaoran Xue,
Long Zhang,
Jiekai Chen,
Li Shen
Publication year - 2021
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/gkab1069
Subject(s) - biology , totipotent , chromatin , enhancer , embryonic stem cell , induced pluripotent stem cell , genome , cohesin , genetics , microbiology and biotechnology , reprogramming , ctcf , chromosome conformation capture , gene , computational biology , transcription factor
The 3D genome organization is crucial for gene regulation. Although recent studies have revealed a uniquely relaxed genome conformation in totipotent early blastomeres of both fertilized and cloned embryos, how weakened higher-order chromatin structure is functionally linked to totipotency acquisition remains elusive. Using low-input Hi-C, ATAC-seq and ChIP-seq, we systematically examined the dynamics of 3D genome and epigenome during pluripotent to totipotent-like state transition in mouse embryonic stem cells (ESCs). The spontaneously converted 2-cell-embryo-like cells (2CLCs) exhibited more relaxed chromatin architecture compared to ESCs, including global weakening of both enhancer-promoter interactions and TAD insulation. While the former correlated with inactivation of ESC enhancers and down-regulation of pluripotent genes, the latter might facilitate contacts between the putative new enhancers arising in 2CLCs and neighboring 2C genes. Importantly, disruption of chromatin organization by depleting CTCF or the cohesin complex promoted the ESC to 2CLC transition. Our results thus establish a critical role of 3D genome organization in totipotency acquisition.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom