z-logo
open-access-imgOpen Access
The 5' stem-loop regulates expression of collagen alpha1(I) mRNA in mouse fibroblasts cultured in a three-dimensional matrix
Author(s) -
Branko Stefanovic
Publication year - 2000
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/28.2.641
Subject(s) - messenger rna , biology , microbiology and biotechnology , untranslated region , stem cell , type i collagen , cytoplasm , precursor mrna , three prime untranslated region , gene expression , biochemistry , rna , gene , rna splicing , endocrinology
The stability of collagen alpha1(I) mRNA is regulated by its 5' stem-loop, which binds a cytoplasmic protein in a cap-dependent manner, and its 3'-untranslated region (UTR), which binds alphaCP. When cultured in a three-dimensional gel composed of type I collagen, mouse fibroblasts had decreased collagen alpha1(I) mRNA steady-state levels, which resulted from a decreased mRNA half-life. In cells cultured in gel, hybrid mouse-human collagen alpha1(I) mRNA with a wild-type 5' stem-loop decayed faster than the same mRNA with a mutated stem-loop. When the 5' stem-loop was placed in a heterologous mRNA, the mRNA accumulated to a lower level in cells grown in gel than in cells grown on plastic. This suggests that the 5' stem-loop down-regulates collagen alpha1(I) mRNA. Protein binding to the 5' stem-loop was reduced in cells grown in gel, which was associated with destabilization of the collagen alpha1(I) mRNA. In addition to the binding of a cytoplasmic protein, there was also a nuclear binding activity directed to the collagen alpha1(I) 5' stem-loop. The nuclear binding was increased in cells grown in gel, suggesting that it may negatively regulate expression of collagen alpha1(I) mRNA. Binding of alphaCP, a protein involved in stabilization of collagen alpha1(I) mRNA, was unchanged by the culture conditions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom