z-logo
open-access-imgOpen Access
Inhibition of in vitro and ex vivo translation by a transplatin-modified oligo(2'-O-methylribonucleotide) directed against the HIV-1 gag-pol frameshift signal
Author(s) -
K. Aupeix-Scheidler
Publication year - 2000
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/28.2.438
Subject(s) - biology , oligonucleotide , rna , microbiology and biotechnology , luciferase , transfection , translation (biology) , internal ribosome entry site , messenger rna , dna , biochemistry , gene
A 2'-O-methylribooligonucleotide containing a G1.U.G3 triad modified by trans-diamminedichloro-platinum(II) was targeted to the RNA region responsible for the gag-pol frameshifting during translation of the HIV-1 mRNA. The binding of the platinated oligonucleotide to its target RNA induced a rearrangement of the (G1, G3)-intrastrand crosslink, leading to the formation of an intermolecular oligonucleotide-RNA G-A crosslink. This resulted in the selective arrest of translation of a luciferase gene placed downstream of the HIV-1 frameshift signal both in a cell-free extract (rabbit reticulocyte lysate) and in RNA-transfected cells. A specific inhibition of luciferase activity was still observed when the oligonucleotide-RNA complex was not pre-formed prior to either translation or transfection. Moreover, a selective inhibition was also observed when the oligonucleotide and the plasmid DNA encoding the luciferase and bearing the RNA gag- pol frameshifting signal were co-transfected in NIH 3T3 cultured cells. Therefore the intra-strand-->interstrand conversion of the platinum crosslink kinetically competes with the translation machinery and blocks the polypeptide elongation. These transplatin-modified oligonucleotides which operate within a live cell on a 'real-time' basis and do not need an external triggering signal constitute a promising new class of selective reactive probes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom