Open Access
Sequence and expression characteristics of a nuclear-encoded chloroplast sigma factor from mustard (Sinapis alba)
Author(s) -
Maya Kestermann,
Susanne Neukirchen,
Klaus Kloppstech,
Gerhard Link
Publication year - 1998
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/26.11.2747
Subject(s) - sinapis , biology , chloroplast dna , microbiology and biotechnology , rna polymerase , complementary dna , transcription (linguistics) , chloroplast , escherichia coli , transit peptide , biochemistry , gene , botany , plastid , linguistics , philosophy , brassica
Plant chloroplasts contain transcription factors that functionally resemble bacterial sigma factors. We have cloned the full-length cDNA from mustard (Sinapis alba) for a 53 kDa derived polypeptide that contains similarity to regions 1.2-4.2 of sigma70-type factors. The amino acid sequence at the N-terminus has characteristics of a chloroplast transit peptide. An in vitro synthesized polypeptide containing this region was shown to be imported into the chloroplast and processed. The recombinant factor lacking the N-terminal extension was expressed in Escherichia coli and purified. It confers the ability on E.coli core RNA polymerase to bind specifically to a DNA fragment that contains the chloroplast psbA promoter. Transcription of the psbA template by E.coli core enzyme in the presence of recombinant SIG1 results in enhanced formation of transcripts of the size expected for correct initiation at the in vivo start site. Together, these data suggest that the mature protein acts as one of the chloroplast transcription factors in mustard. RNA gel blot hybridization reveals a transcript at approximately 1.8 kb, which is more abundant in light-grown than in dark-grown mustard seedlings.