Binding of HMG 17 to mononucleosomes of the avianβ-globin gene cluster in erythroid and non-erythroid cells
Author(s) -
Timothy W. Brotherton,
Jeff Reneker,
Gordon D. Ginder
Publication year - 1990
Publication title -
nucleic acids research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.008
H-Index - 537
eISSN - 1362-4954
pISSN - 0305-1048
DOI - 10.1093/nar/18.8.2011
Subject(s) - biology , gene , microbiology and biotechnology , globin , gene cluster , hypersensitive site , transcription (linguistics) , promoter , gene expression , dna , genetics , linguistics , philosophy
The binding of HMG 17 to stripped core mononucleosomes containing DNA from the avian beta-globin gene cluster was examined to determine whether binding in vitro in this developmentally-regulated gene domain was associated with transcriptional activity or DNaseI-sensitivity in intact nuclei. Mononucleosomes were prepared from primitive and definitive stage embryonic red blood cells of chick embryos, adult reticulocytes, adult reticulocytes in which embryonic rho-globin transcription was induced, and adult thymus cells. Preferential binding by HMG 17 to mononucleosomes containing the beta-globin gene cluster was confined to erythroid-derived mononucleosomes that contain the embryonic rho-globin gene, the adult beta-globin gene, and DNA sequences located between these two genes, but not to those that contain the embryonic epsilon-globin gene. Comparison of these results to the known patterns of transcription and DNaseI-sensitivity within the beta-globin gene cluster shows that HMG 17 binding, although tissue-specific, does not correlate directly with either DNaseI-sensitivity or active gene transcription, but is dependent on other factors present in core mononucleosomes from this active gene domain.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom