Radiation dosimetry and repair kinetics of DNA damage foci in mouse pachytene spermatocyte and round spermatid stages
Author(s) -
Priti Singh,
Lalit Mohan Aggarwal,
Stephen Parry,
Mercy J. Raman
Publication year - 2018
Publication title -
mutagenesis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.723
H-Index - 91
eISSN - 1464-3804
pISSN - 0267-8357
DOI - 10.1093/mutage/gey007
Subject(s) - spermatid , spermatocyte , dna damage , dna , microbiology and biotechnology , kinetics , biology , spermatogenesis , physics , genetics , meiosis , quantum mechanics , gene , endocrinology
Accurate quantification of DNA double strand breaks (DSB) in testicular germ cells is difficult because of cellular heterogeneity and the presence of endogenous γH2AX. Here, we used confocal microscopy to quantify DNA damage and repair kinetics following γ-irradiation (0.5-4 Gy) in three major mouse male germ cell stages, early and late pachytene spermatocytes and round spermatids (RSs), following a defined post irradiation time course. Dose-response curves showing linear best fit validated γH2AX focus as a rapid biodosimetric tool in these substages in response to whole body in vivo exposure. Stage specific foci yield/dose and repair kinetics demonstrated differential radiosensitivity and repair efficiency: early pachytenes (EP) repaired most rapidly and completely followed by late pachytene (LP) and RSs. Repair kinetics for all three stages followed 'exponential decay' in response to each radiation dose. In pachytenes immediate colocalisation of γH2AX and 53BP1, which participates in non-homologous end-joining repair pathway, was followed by dissociation from the major focal area of γH2AX by 4 h demonstrating ongoing DSB repair. These results confirm the differential radiosensitivity and repair kinetics of DSBs in male germ cells at different stages. Taken together, our results provide a simple and accurate method for assessing DNA damage and repair kinetics during spermatogenesis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom