Where will genetic toxicology testing be in 30 years’ time? Summary report of the 25th Industrial Genotoxicity Group Meeting, Royal Society of Medicine, London, November 9, 2011
Author(s) -
Patricia C. Ellis,
Paul Fowler,
Ewan D. Booth,
Darren Kidd,
Jonathan Howe,
Ann Doherty,
Andrew D. Scott
Publication year - 2013
Publication title -
mutagenesis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.723
H-Index - 91
eISSN - 1464-3804
pISSN - 0267-8357
DOI - 10.1093/mutage/get057
Subject(s) - genotoxicity , adverse outcome pathway , toxicology , computational biology , engineering ethics , risk analysis (engineering) , medicine , biology , engineering , toxicity
A number of influences including legislation, industry and academia have encouraged advances in computational toxicology and high-throughput testing to probe more broadly putative toxicity pathways. The aim of the 25th United Kingdom Mutagen Society (UKEMS) Industrial Genotoxicity Group Annual Meeting 2011 was to explore current and upcoming research tools that may provide new cancer risk estimation approaches and discuss the genotoxicity testing paradigm of the future. The meeting considered whether computer modelling, molecular biology systems and/or adverse outcome pathway approaches can provide more accurate toxicity predictions and whether high-content study data, pluripotent stem cells or new scientific disciplines, such as epigenetics and adductomics, could be integrated into the risk assessment process. With close collaboration between industry, academia and regulators next generation predictive models and high-content tools have the potential to transform genetic toxicology testing in the 21st century.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom