Ochratoxin A induces DNA double-strand breaks and large deletion mutations in the carcinogenic target site of gpt delta rats
Author(s) -
Ken Kuroda,
Daisuke Hibi,
Yuji Ishii,
Shinji Takasu,
Aki Kijima,
Kohei Matsushita,
Kenichi Masumura,
Maiko Watanabe,
Yoshiko SugitaKonishi,
Hiroki Sakai,
Tokuma Yanai,
Takehiko Nohmi,
Kumiko Ogawa,
Takashi Umemura
Publication year - 2013
Publication title -
mutagenesis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.723
H-Index - 91
eISSN - 1464-3804
pISSN - 0267-8357
DOI - 10.1093/mutage/get054
Subject(s) - rad51 , microbiology and biotechnology , comet assay , biology , dna damage , homologous recombination , dna repair , mutant , gene , mutation , dna , genetics
Ochratoxin A (OTA) is a carcinogen targeting proximal tubules at the renal outer medulla (ROM) in rodents. We previously reported that OTA increased mutant frequencies of the red/gam gene (Spi(-)), primarily deletion mutations. In the present study, Spi(-) assays and mutation spectrum analyses in the Spi(-) mutants were performed using additional samples collected in our previous study. Spi(-) assay results were similar to those in our previous study, revealing large (>1kb) deletion mutations in the red/gam gene. To clarify the molecular progression from DNA damage to gene mutations, in vivo comet assays and analysis of DNA damage/repair-related mRNA and/or protein expression was performed using the ROM of gpt delta rats treated with OTA at 70, 210 or 630 µg/kg/day by gavage for 4 weeks. Western blotting and immunohistochemical staining demonstrated that OTA increased γ-H2AX expression specifically at the carcinogenic target site. In view of the results of comet assays, we suspected that OTA was capable of inducing double-strand breaks (DSBs) at the target sites. mRNA and/or protein expression levels of homologous recombination (HR) repair-related genes (Rad51, Rad18 and Brip1), but not nonhomologous end joining-related genes, were increased in response to OTA in a dose-dependent manner. Moreover, dramatic increases in the expression of genes involved in G2/M arrest (Chek1 and Wee1) and S/G2 phase (Ccna2 and Cdk1) were observed, suggesting that DSBs induced by OTA were repaired predominantly by HR repair, possibly due to OTA-specific cell cycle regulation, consequently producing large deletion mutations at the carcinogenic target site.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom