z-logo
open-access-imgOpen Access
Mutator pathways unleashed by epigenetic silencing in human cancer
Author(s) -
Filipe V. Jacinto,
Manel Esteller
Publication year - 2007
Publication title -
mutagenesis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.723
H-Index - 91
eISSN - 1464-3804
pISSN - 0267-8357
DOI - 10.1093/mutage/gem009
Subject(s) - cancer epigenetics , dna repair , biology , epigenetics , dna methylation , genome instability , genetics , dna mismatch repair , gene silencing , gene , cancer research , dna damage , dna , histone methyltransferase , gene expression
Human cancers exhibit genomic instability and an increased mutation rate due to underlying defects in DNA repair genes. Hypermethylation of CpG islands in gene promoter regions is an important mechanism of gene inactivation in cancer. Many cellular pathways, including DNA repair, are inactivated by this type of epigenetic lesion, resulting in mutator pathways. In this review, we discuss the adverse consequences suffered by a cell when DNA repair genes such as the DNA mismatch repair gene hMLH1, the DNA alkyl-repair gene O(6)-methylguanine-DNA methyltransferase, the familial breast cancer gene BRCA1 and the Werner syndrome gene WRN become epigenetically silenced in human cancer.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom