z-logo
open-access-imgOpen Access
Transcriptomic Signatures Mirror the Lack of the Fecundity/Longevity Trade-Off in Ant Queens
Author(s) -
Katharina von Wyschetzki,
Olav Rueppell,
Jan Oettler,
Juergen Heinze
Publication year - 2015
Publication title -
molecular biology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.637
H-Index - 218
eISSN - 1537-1719
pISSN - 0737-4038
DOI - 10.1093/molbev/msv186
Subject(s) - biology , longevity , eusociality , transcriptome , mating , fecundity , drosophila melanogaster , ant , evolutionary biology , gene , insect , zoology , hymenoptera , ecology , genetics , gene expression , population , demography , sociology
Life-history theory predicts a trade-off between reproductive investment and self-maintenance. The negative association between fertility and longevity found throughout multicellular organisms supports this prediction. As an important exception, the reproductives of many eusocial insects (ants, bees, and termites) are simultaneously very long-lived and highly fertile. Here, we examine the proximate basis for this exceptional relationship by comparing whole-body transcriptomes of differently aged queens of the ant Cardiocondyla obscurior. We show that the sets of genes differentially expressed with age significantly overlap with age-related expression changes previously found in female Drosophila melanogaster. We identified several developmental processes, such as the generation of neurons, as common signatures of aging. More generally, however, gene expression in ant queens and flies changes with age mainly in opposite directions. In contrast to flies, reproduction-associated genes were upregulated and genes associated with metabolic processes and muscle contraction were downregulated in old relative to young ant queens. Furthermore, we searched for putative C. obscurior longevity candidates associated with the previously reported lifespan-prolonging effect of mating by comparing the transcriptomes of queens that differed in mating and reproductive status. We found 21 genes, including the putative aging candidate NLaz (an insect homolog of APOD), which were consistently more highly expressed in short-lived, unmated queens than in long-lived, mated queens. Our study provides clear evidence that the alternative regulation of conserved molecular pathways that mediate the interplay among mating, egg laying, and aging underlies the lack of the fecundity/longevity trade-off in ant queens.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here