Selection on Coding Regions Determined Hox7 Genes Evolution
Author(s) -
Mario A. Fares
Publication year - 2003
Publication title -
molecular biology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.637
H-Index - 218
eISSN - 1537-1719
pISSN - 0737-4038
DOI - 10.1093/molbev/msg222
Subject(s) - biology , hox gene , gene , gene duplication , evolutionary biology , vertebrate , negative selection , genetics , selection (genetic algorithm) , body plan , positive selection , molecular evolution , functional divergence , phylogenetics , gene family , genome , gene expression , artificial intelligence , computer science
The important role of Hox genes in determining the regionalization of the body plan of the vertebrates makes them invaluable candidates for evolutionary analyses regarding functional and morphological innovation. Gene duplication and gene loss led to a variable number of Hox genes in different vertebrate lineages. The evolutionary forces determining the conservation or loss of Hox genes are poorly understood. In this study, we show that variable selective pressures acted on Hox7 genes in different evolutionary lineages, with episodes of positive selection occurring after gene duplications. Tests for functional divergence in paralogs detected significant differentiation in a region known to modulate HOX7 protein activity. Our results show that both positive and negative selection on coding regions are influencing Hox7 genes evolution.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom