Using a Pericentromeric Interspersed Repeat to Recapitulate the Phylogeny and Expansion of Human Centromeric Segmental Duplications
Author(s) -
Juliann E. Horvath,
Cassandra Gulden,
J.A. Bailey,
Chris T Yohn,
John D. McPherson,
Ann Prescott,
B.A. Roe,
Pieter J. de Jong,
Mario Ventura,
Doriana Misceo,
Nicoletta Archidiacono,
Shengguo Zhao,
Scott Schwartz,
Mariano Rocchi,
E. E. Eichler
Publication year - 2003
Publication title -
molecular biology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.637
H-Index - 218
eISSN - 1537-1719
pISSN - 0737-4038
DOI - 10.1093/molbev/msg158
Subject(s) - biology , segmental duplication , gene duplication , genome , evolutionary biology , genetics , human genome , sequence (biology) , structural variation , dna sequencing , phylogenetics , dna , gene , gene family
Despite considerable advances in sequencing of the human genome over the past few years, the organization and evolution of human pericentromeric regions have been difficult to resolve. This is due, in part, to the presence of large, complex blocks of duplicated genomic sequence at the boundary between centromeric satellite and unique euchromatic DNA. Here, we report the identification and characterization of an approximately 49-kb repeat sequence that exists in more than 40 copies within the human genome. This repeat is specific to highly duplicated pericentromeric regions with multiple copies distributed in an interspersed fashion among a subset of human chromosomes. Using this interspersed repeat (termed PIR4) as a marker of pericentromeric DNA, we recovered and sequence-tagged 3 Mb of pericentromeric DNA from a variety of human chromosomes as well as nonhuman primate genomes. A global evolutionary reconstruction of the dispersal of PIR4 sequence and analysis of flanking sequence supports a model in which pericentromeric duplications initiated before the separation of the great ape species (>12 MYA). Further, analyses of this duplication and associated flanking duplications narrow the major burst of pericentromeric duplication activity to a time just before the divergence of the African great ape and human species (5 to 7 MYA). These recent duplication exchange events substantially restructured the pericentromeric regions of hominoid chromosomes and created an architecture where large blocks of sequence are shared among nonhomologous chromosomes. This report provides the first global view of the series of historical events that have reshaped human pericentromeric regions over recent evolutionary time.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom