z-logo
open-access-imgOpen Access
Gene Diversity Patterns at 10 X-Chromosomal Loci in Humans and Chimpanzees
Author(s) -
Takashi Kitano
Publication year - 2003
Publication title -
molecular biology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.637
H-Index - 218
eISSN - 1537-1719
pISSN - 0737-4038
DOI - 10.1093/molbev/msg134
Subject(s) - nonsynonymous substitution , biology , genetics , gene , nucleotide diversity , synonymous substitution , lineage (genetic) , single nucleotide polymorphism , allele , evolutionary biology , genome , haplotype , codon usage bias , genotype
We have investigated the pattern and extent of nucleotide diversity in 10 X-chromosomal genes where mutations are known to cause mental retardation in humans. For each gene, we sequenced the entire coding region from cDNA in humans, chimpanzees, and orangutans, as well as about 3 kb of genomic DNA in 20 humans sampled worldwide and in 10 chimpanzees representing two "subspecies." Overall nucleotide diversity in these genes is about twofold lower in humans than in chimpanzees, and nucleotide diversity within and between species is low, suggesting that a high level of functional constraint acts on these genes. Strikingly, we find that a summary of the allele frequency spectrum is significantly correlated in humans and chimpanzees, perhaps reflecting very similar levels of constraint at these genes in the two species. A possible exception is FMR2, which shows a higher number of nonsynonymous than synonymous substitutions on the human lineage, suggesting the action of positive selection.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom