z-logo
open-access-imgOpen Access
Functional Respiratory Chain Analyses in Murid Xenomitochondrial Cybrids Expose Coevolutionary Constraints of Cytochrome b and Nuclear Subunits of Complex III
Author(s) -
Matthew McKenzie
Publication year - 2003
Publication title -
molecular biology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.637
H-Index - 218
eISSN - 1537-1719
pISSN - 0737-4038
DOI - 10.1093/molbev/msg132
Subject(s) - biology , cytochrome b , mitochondrial dna , respiratory chain , phylogenetic tree , nuclear gene , genetics , phylogenetics , mitochondrial respiratory chain , cytochrome c oxidase , genome , evolutionary biology , cytochrome , gene , mitochondrion , biochemistry , enzyme
The large number of extant Muridae species provides the opportunity of investigating functional limits of nuclear/mitochondrial respiratory chain (RC) subunit interactions by introducing mitochondrial genomes from progressively more divergent species into Mus musculus domesticus mtDNA-less (rho0) cells. We created a panel of such xenomitochondrial cybrids, using as mitochondrial donors cells from six murid species with divergence from M. m. domesticus estimated at 2 to 12 Myr before present. Species used were Mus spretus, Mus caroli, Mus dunni, Mus pahari, Otomys irroratus, and Rattus norvegicus. Parsimony analysis of partial mtDNA sequences showed agreement with previous molecular phylogenies, with the exception that Otomys did not nest within the murinae as suggested by some recent nuclear gene analyses. Cellular production of lactate, a sensitive indicator of decreased respiratory chain ATP production, correlated with divergence. Functional characterization of the chimeric RC complexes in isolated mitochondria using enzymological analyses demonstrated varying decreases in activities of complexes I, III, and IV, which have subunits encoded in both mitochondrial and nuclear genomes. Complex III showed a striking decline in electron transfer function in the most divergent xenocybrids, being greatly reduced in the Rattus xenocybrid and virtually absent in the Otomys xenocybrid. This suggests that nuclear subunits interacting with cytochrome b face the greatest constraints in the coevolution of murid RC subunits. We sequenced the cytochrome b gene from the species used to identify potential amino acid substitutions involved in such interactions. The greater sensitivity of complex III to xenocybrid dysfunction may result from the encoding of redox center apoproteins in both nuclear and mitochondrial genomes, a unique feature of this RC complex.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom