z-logo
open-access-imgOpen Access
The Effects of Selection Against Spurious Transcription Factor Binding Sites
Author(s) -
Martin W. Hahn
Publication year - 2003
Publication title -
molecular biology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.637
H-Index - 218
eISSN - 1537-1719
pISSN - 0737-4038
DOI - 10.1093/molbev/msg096
Subject(s) - spurious relationship , biology , genome , genetics , negative selection , selection (genetic algorithm) , computational biology , dna binding site , coding region , binding site , evolutionary biology , gene , promoter , statistics , computer science , mathematics , gene expression , artificial intelligence
Most genomes contain nucleotide sequences with no known function; such sequences are assumed to be free of constraints, evolving only according to the vagaries of mutation. Here we show that selection acts to remove spurious transcription factor binding site motifs throughout 52 fully sequenced genomes of Eubacteria and Archaea. Examining the sequences necessary for polymerase binding, we find that spurious binding sites are underrepresented in both coding and noncoding regions. The average proportion of spurious binding sites found relative to the expected is 80% in eubacterial genomes and 89% in archaeal genomes. We also estimate the strength of selection against spurious binding sites in the face of the constant creation of new binding sites via mutation. Under conservative assumptions, we estimate that selection is weak, with the average efficacy of selection against spurious binding sites, Nes, of -0.12 for eubacterial genomes and -0.06 for archaeal genomes, similar to that of codon bias. Our results suggest that both coding and noncoding sequences are constrained by selection to avoid specific regions of sequence space.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom