z-logo
open-access-imgOpen Access
Hoppel, a P-like Element Without Introns: a P-Element Ancestral Structure or a Retrotranscription Derivative?
Author(s) -
Daphné Reiss,
Hadi Quesneville,
Danielle Nouaud,
Olivier Andrieu,
Dominique Anxolabéhère
Publication year - 2003
Publication title -
molecular biology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.637
H-Index - 218
eISSN - 1537-1719
pISSN - 0737-4038
DOI - 10.1093/molbev/msg090
Subject(s) - transposase , biology , transposable element , genetics , p element , intron , insertion sequence , group ii intron , inverted repeat , sequence analysis , exon , mobile genetic elements , genome , gene , rna splicing , rna
An in silico search for P-transposable-element-related sequences in the Drosophila melanogaster genome allowed us to detect sequences that are similar to P-element transposases. These sequences are located in the central region of 3.4-kb Hoppel elements, a class II transposon. Polymerase chain reaction (PCR) analysis of the insertional polymorphism revealed that these elements are mobile. The 3.4-kb elements are the longest copies of this family ever found. They contain an open reading frame that is long enough to encode a transposase, suggesting that the 3.4-kb elements are the full-length copies of the Hoppel family. Multiple alignments of several P-element transposases from different species and the Hoppel-element-encoded peptide showed that all of the P-element introns and the 5' region of the transposase are absent from the Hoppel sequence. Sequence analysis combined with reverse transcriptase PCR analysis showed that the 3.4-kb Hoppel elements are intronless. P and Hoppel not only share similar amino acid sequences but also have terminal inverted repeats of the same length (31 bp), and their excision footprints present a similar structure, which suggests that their transposases are functionally very similar. Thus, we propose that the Hoppel element family be included in the P-element superfamily. Two evolutionary scenarios are discussed considering the presence /absence of introns within the P-element superfamily.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom