Testing Substitution Models Within a Phylogenetic Tree
Author(s) -
Günter Weiß
Publication year - 2003
Publication title -
molecular biology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.637
H-Index - 218
eISSN - 1537-1719
pISSN - 0737-4038
DOI - 10.1093/molbev/msg073
Subject(s) - biology , substitution (logic) , phylogenetic tree , tree (set theory) , evolutionary biology , phylogenetics , genetics , gene , combinatorics , computer science , mathematics , programming language
Phylogenetic tree reconstruction frequently assumes the homogeneity of the substitution process over the whole tree. To test this assumption statistically, we propose a test based on the sample covariance matrix of the set of substitution rate matrices estimated from pairwise sequence comparison. The sample covariance matrix is condensed into a one-dimensional test statistic Delta = sum ln(1 + delta(i)), where delta(i) are the eigenvalues of the sample covariance matrix. The test does not assume a specific mutational model. It analyses the variation in the estimated rate matrices. The distribution of this test statistic is determined by simulations based on the phylogeny estimated from the data. We study the power of the test under various scenarios and apply the test to X chromosome and mtDNA primate sequence data. Finally, we demonstrate how to include rate variation in the test.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom