z-logo
open-access-imgOpen Access
Sequence Complexity of Histone H1 Subtypes
Author(s) -
Inma Ponte,
Roger Vila,
Pedro Suau
Publication year - 2003
Publication title -
molecular biology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.637
H-Index - 218
eISSN - 1537-1719
pISSN - 0737-4038
DOI - 10.1093/molbev/msg041
Subject(s) - biology , genetics , tandem repeat , chromatin , sequence (biology) , peptide sequence , sequence alignment , gene , histone , computational biology , evolutionary biology , genome
H1 subtypes are involved in chromatin higher-order structure and gene regulation. H1 has a characteristic three-domain structure. We studied the length variation of the available H1 subtypes and showed that the length of the N-terminal and C-terminal domains was more variable than that of the central domain. The N-terminal and C-terminal domains were of low sequence complexity both at the nucleotide and at the amino acid level, whereas the globular domain was of high complexity. In most subtypes, low complexity was due only to cryptic simplicity, which reflects the clustering of a number of short and often imperfect sequence motifs. However, a subset of subtypes from eubacteria, plants, and invertebrates contained tandem repeats of short amino acid motifs (four to 12 residues), which could amount to a large proportion of the terminal domains. In addition, some other subtypes, such as those of Drosophila and mammalian H1t, were only marginally simple. The coexistence of these three kinds of subtypes suggests that the terminal domains could have originated in the amplification of short sequence motifs, which would then have evolved by point mutation and further slippage.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom