The Carbon Footprint of Bioinformatics
Author(s) -
Jason Grealey,
Loïc Lannelongue,
WoeiYuh Saw,
Jonathan Marten,
Guillaume Méric,
Sergio RuizCarmona,
Michael Inouye
Publication year - 2022
Publication title -
molecular biology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.637
H-Index - 218
eISSN - 1537-1719
pISSN - 0737-4038
DOI - 10.1093/molbev/msac034
Subject(s) - carbon footprint , footprint , memory footprint , computer science , graphics processing unit , greenhouse gas , calculator , software , biobank , cloud computing , biology , data science , bioinformatics , parallel computing , ecology , operating system , paleontology
Bioinformatic research relies on large-scale computational infrastructures which have a nonzero carbon footprint but so far, no study has quantified the environmental costs of bioinformatic tools and commonly run analyses. In this work, we estimate the carbon footprint of bioinformatics (in kilograms of CO2 equivalent units, kgCO2e) using the freely available Green Algorithms calculator (www.green-algorithms.org, last accessed 2022). We assessed 1) bioinformatic approaches in genome-wide association studies (GWAS), RNA sequencing, genome assembly, metagenomics, phylogenetics, and molecular simulations, as well as 2) computation strategies, such as parallelization, CPU (central processing unit) versus GPU (graphics processing unit), cloud versus local computing infrastructure, and geography. In particular, we found that biobank-scale GWAS emitted substantial kgCO2e and simple software upgrades could make it greener, for example, upgrading from BOLT-LMM v1 to v2.3 reduced carbon footprint by 73%. Moreover, switching from the average data center to a more efficient one can reduce carbon footprint by approximately 34%. Memory over-allocation can also be a substantial contributor to an algorithm’s greenhouse gas emissions. The use of faster processors or greater parallelization reduces running time but can lead to greater carbon footprint. Finally, we provide guidance on how researchers can reduce power consumption and minimize kgCO2e. Overall, this work elucidates the carbon footprint of common analyses in bioinformatics and provides solutions which empower a move toward greener research.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom