z-logo
open-access-imgOpen Access
Consequences of Stability-Induced Epistasis for Substitution Rates
Author(s) -
Noor Youssef,
Edward Susko,
Joseph P. Bielawski
Publication year - 2020
Publication title -
molecular biology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.637
H-Index - 218
eISSN - 1537-1719
pISSN - 0737-4038
DOI - 10.1093/molbev/msaa151
Subject(s) - epistasis , biology , stability (learning theory) , selection (genetic algorithm) , inference , evolutionary biology , molecular evolution , substitution (logic) , mutation , genetics , computer science , gene , artificial intelligence , phylogenetics , machine learning , programming language
Do interactions between residues in a protein (i.e., epistasis) significantly alter evolutionary dynamics? If so, what consequences might they have on inference from traditional codon substitution models which assume site-independence for the sake of computational tractability? To investigate the effects of epistasis on substitution rates, we employed a mechanistic mutation-selection model in conjunction with a fitness framework derived from protein stability. We refer to this as the stability-informed site-dependent (S-SD) model and developed a new stability-informed site-independent (S-SI) model that captures the average effect of stability constraints on individual sites of a protein. Comparison of S-SI and S-SD offers a novel and direct method for investigating the consequences of stability-induced epistasis on protein evolution. We developed S-SI and S-SD models for three natural proteins and showed that they generate sequences consistent with real alignments. Our analyses revealed that epistasis tends to increase substitution rates compared with the rates under site-independent evolution. We then assessed the epistatic sensitivity of individual site and discovered a counterintuitive effect: Highly connected sites were less influenced by epistasis relative to exposed sites. Lastly, we show that, despite the unrealistic assumptions, traditional models perform comparably well in the presence and absence of epistasis and provide reasonable summaries of average selection intensities. We conclude that epistatic models are critical to understanding protein evolutionary dynamics, but epistasis might not be required for reasonable inference of selection pressure when averaging over time and sites.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom