z-logo
open-access-imgOpen Access
The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions
Author(s) -
Samira Hassan,
Ulrike Mathesius
Publication year - 2012
Publication title -
journal of experimental botany
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.616
H-Index - 242
eISSN - 1460-2431
pISSN - 0022-0957
DOI - 10.1093/jxb/err430
Subject(s) - rhizosphere , flavonoid , flavonoid biosynthesis , rhizobia , biology , botany , auxin , symbiosis , biochemistry , bacteria , gene , gene expression , transcriptome , genetics , antioxidant
The flavonoid pathway produces a diverse array of plant compounds with functions in UV protection, as antioxidants, pigments, auxin transport regulators, defence compounds against pathogens and during signalling in symbiosis. This review highlights some of the known function of flavonoids in the rhizosphere, in particular for the interaction of roots with microorganisms. Depending on their structure, flavonoids have been shown to stimulate or inhibit rhizobial nod gene expression, cause chemoattraction of rhizobia towards the root, inhibit root pathogens, stimulate mycorrhizal spore germination and hyphal branching, mediate allelopathic interactions between plants, affect quorum sensing, and chelate soil nutrients. Therefore, the manipulation of the flavonoid pathway to synthesize specifically certain products has been suggested as an avenue to improve root-rhizosphere interactions. Possible strategies to alter flavonoid exudation to the rhizosphere are discussed. Possible challenges in that endeavour include limited knowledge of the mechanisms that regulate flavonoid transport and exudation, unforeseen effects of altering parts of the flavonoid synthesis pathway on fluxes elsewhere in the pathway, spatial heterogeneity of flavonoid exudation along the root, as well as alteration of flavonoid products by microorganisms in the soil. In addition, the overlapping functions of many flavonoids as stimulators of functions in one organism and inhibitors of another suggests caution in attempts to manipulate flavonoid rhizosphere signals.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom