z-logo
open-access-imgOpen Access
Developmental and stress regulation of gene expression for a 9-cis-epoxycarotenoid dioxygenase, CstNCED, isolated from Crocus sativus stigmas
Author(s) -
Oussama Ahrazem,
Ángela RubioMoraga,
Almudena TraperoMozos,
Lourdes GómezGómez
Publication year - 2011
Publication title -
journal of experimental botany
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.616
H-Index - 242
eISSN - 1460-2431
pISSN - 0022-0957
DOI - 10.1093/jxb/err293
Subject(s) - abscisic acid , biology , crocus sativus , dormancy , corm , botany , gene , gene expression , gibberellin , senescence , plastid , chloroplast , microbiology and biotechnology , biochemistry , germination
Oxidative cleavage of cis-epoxycarotenoids by 9-cis-epoxycarotenoid dioxygenase (NCED) is the critical step in the regulation of abscisic acid (ABA) synthesis in higher plants. ABA has been associated with dormancy and flower senescence, while also regulating plant adaptive responses to various environmental stresses. An NCED gene, CstNCED, was cloned from Crocus sativus stigmas. The deduced amino acid sequence of the CstNCED protein shared high identity with other monocot NCEDs, and was closely related to the liliopsida enzymes. At the N-terminus of CstNCED a chloroplast transit peptide sequence is located. However, its expression in chloroplast-free tissues suggested localization in other plastid types. The relationship between expression of CstNCED and the endogenous ABA level was investigated in the stigma and corms, where it was developmentally regulated. The senescence of the unpollinated stigma is preceded by an increase in ABA levels and CstNCED expression. In corms, a correlation was observed between CstNCED expression and dormancy. Furthermore, CstNCED expression was correlated with the presence of zeaxanthin in the dormant corms. When detached C. sativus leaves and stigmas were water and salt stressed, increases in CstNCED mRNA were observed. The results provided evidence of the involvement of CstNCED in the regulation of ABA-associated processes such as flower senescence and corm dormancy in monocotyledonous saffron.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom