z-logo
open-access-imgOpen Access
Induction of somatic mutations by low concentrations of tritiated water (HTO): evidence for the possible existence of a dose-rate threshold
Author(s) -
Haruki Nagashima,
Yasuhiko Hayashi,
Yuki Sakamoto,
Kenshi Komatsu,
Hiroshi Tauchi
Publication year - 2021
Publication title -
journal of radiation research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.643
H-Index - 60
eISSN - 1349-9157
pISSN - 0449-3060
DOI - 10.1093/jrr/rrab022
Subject(s) - tritiated water , mutation rate , mutant , chemistry , mutation , tritium , dose rate , radiochemistry , mutation frequency , nuclear physics , biochemistry , physics , gene
Tritium is a low energy beta emitter and is discharged into the aquatic environment primarily in the form of tritiated water (HTO) from nuclear power plants or from nuclear fuel reprocessing plants. Although the biological effects of HTO exposures at significant doses or dose rates have been extensively studied, there are few reports concerning the biological effects of HTO exposures at very low dose rates. In the present study using a hyper-sensitive assay system, we investigated the dose rate effect of HTO on the induction of mutations. Confluent cell populations were exposed to HTO for a total dose of 0.2 Gy at dose rates between 4.9 mGy/day and 192 mGy/day by incubating cells in medium containing HTO. HTO-induced mutant frequencies and mutation spectra were then investigated. A significant inflection point for both the mutant frequency and mutation spectra was found between 11 mGy/day and 21.6 mGy/day. Mutation spectra analysis revealed that a mechanistic change in the nature of the mutation events occurred around 11 mGy/day. The present observations and published experimental results from oral administrations of HTO to mice suggest that a threshold dose-rate for HTO exposures might exist between 11 mGy/day and 21.6 mGy/day where the nature of the mutation events induced by HTO becomes similar to those seen in spontaneous events.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here