Vesicular drug delivery for the treatment of topical disorders: current and future perspectives
Author(s) -
Bwalya A. Witika,
Larry L Mweetwa,
Kabo O. Tshiamo,
Karen J. Edler,
Scott Kaba Matafwali,
Pascal Vitalis Ntemi,
Melissa T. R. Chikukwa,
Pedzisai A. Makoni
Publication year - 2021
Publication title -
journal of pharmacy and pharmacology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.745
H-Index - 118
eISSN - 2042-7158
pISSN - 0022-3573
DOI - 10.1093/jpp/rgab082
Subject(s) - niosome , transdermal , drug delivery , liposome , pharmacology , nanotechnology , vesicle , drug , medicine , chemistry , materials science , membrane , biochemistry
Objectives Vesicular drug delivery has become a useful approach for therapeutic administration of pharmaceutical compounds. Lipid vesicles have found application in membrane biology, immunology, genetic engineering and theragnostics. This review summarizes topical delivery, specifically dermal/transdermal, ocular and transungual, via these vesicles, including future formulation perspectives. Key findings Liposomes and their subsequent derivatives, viz. niosomes, transferosomes, pharmacososmes and ethosomes, form a significant part of vesicular systems that have been successfully utilized in treating an array of topical disorders. These vesicles are thought to be a safe and effective mode of improving the delivery of lipophilic and hydrophilic drugs. Summary Several drug molecules are available for topical disorders. However, physicochemical properties and undesirable toxicity have limited their efficacy. Vesicular delivery systems have the potential to overcome these shortcomings due to properties such as high biocompatibility, simplicity of surface modification and suitability as controlled delivery vehicles. However, incorporating these systems into environmentally responsive dispersants such as hydrogels, ionic liquids and deep eutectic solvents may further enhance therapeutic prowess of these delivery systems. Consequently, improved vesicular drug delivery can be achieved by considering combining some of these formulation approaches.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom