z-logo
open-access-imgOpen Access
Changes in productivity and carbon storage of grasslands in China under future global warming scenarios of 1.5°C and 2°C
Author(s) -
Zhaoqi Wang,
Jinfeng Chang,
Shushi Peng,
Shilong Piao,
Philippe Ciais,
Richard Betts
Publication year - 2019
Publication title -
journal of plant ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.718
H-Index - 38
eISSN - 1752-993X
pISSN - 1752-9921
DOI - 10.1093/jpe/rtz024
Subject(s) - grassland , environmental science , temperate climate , global warming , productivity , primary production , ecosystem , precipitation , atmospheric sciences , carbon cycle , climate change , greenhouse gas , terrestrial ecosystem , soil carbon , climatology , physical geography , ecology , geography , soil water , soil science , biology , meteorology , geology , economics , macroeconomics
Aims The impacts of future global warming of 1.5°C and 2°C on the productivity and carbon (C) storage of grasslands in China are not clear yet, although grasslands in China support ~45 million agricultural populations and more than 238 million livestock populations, and are sensitive to global warming. Methods This study used a process-based terrestrial ecosystem model named ORCHIDEE to simulate C cycle of alpine meadows and temperate grasslands in China. This model was driven by high-resolution (0.5° × 0.5°) climate of global specific warming levels (SWL) of 1.5°C and 2°C (warmer than pre-industrial level), which is downscaled by EC-EARTH3-HR v3.1 with sea surface temperature and sea-ice concentration as boundary conditions from IPSL-CM5-LR (low spatial resolution, 2.5° × 1.5°) Earth system model (ESM). Important Findings Compared with baseline (1971–2005), the mean annual air temperature over Chinese grasslands increased by 2.5°C and 3.7°C under SWL1.5 and SWL2, respectively. The increase in temperature in the alpine meadow was higher than that in the temperate grassland under both SWL1.5 and SWL2. Precipitation was also shown an increasing trend under SWL2 over most of the Chinese grasslands. Strong increases in gross primary productivity (GPP) were simulated in the Chinese grasslands, and the mean annual GPP (GPPMA) increased by 19.32% and 43.62% under SWL1.5 and SWL2, respectively. The C storage increased by 0.64 Pg C and 1.37 Pg C under SWL1.5 and SWL2 for 50 years simulations. The GPPMA was 0.670.390.88 (0.82) (model meanminmax (this study)), 0.850.451.24 (0.97) and 0.940.611.30 (1.17) Pg C year−1 under baseline, SWL1.5 and SWL2 modeled by four CMIP5 ESMs (phase 5 of the Coupled Model Inter-comparison Project Earth System Models). In contrast, the mean annual net biome productivity was −18.55−40.374.47 (−3.61),18.65−2.0364.03 (10.29) and 24.158.3838.77 (24.93) Tg C year−1 under baseline, SWL1.5 and SWL2 modeled by the four CMIP5 ESMs. Our results indicated that the Chinese grasslands would have higher productivity than the baseline and can mitigate climate change through increased C sequestration under future global warming of 1.5°C and 2°C with the increase of precipitation and the global increase of atmospheric CO2 concentration.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom