z-logo
open-access-imgOpen Access
Spectroscopic properties and driving factors of dissolved organic matter in the Yellow River Delta
Author(s) -
Yuan Cui,
FangLi Luo,
Mingxiang Zhang,
FeiHai Yu
Publication year - 2022
Publication title -
journal of plant ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.718
H-Index - 38
eISSN - 1752-993X
pISSN - 1752-9921
DOI - 10.1093/jpe/rtac037
Subject(s) - dissolved organic carbon , colored dissolved organic matter , biogeochemical cycle , river delta , environmental science , phytoplankton , environmental chemistry , delta , soil organic matter , organic matter , hydrology (agriculture) , soil water , ecology , soil science , chemistry , nutrient , geology , biology , geotechnical engineering , engineering , aerospace engineering
River deltas are hot spots of biogeochemical cycling. Understanding sources and driving factors of dissolved organic matter (DOM) in river deltas is important for evaluating the role of river deltas in regulating global carbon flux. In this study, spectroscopic properties of soil DOM were analyzed in both freshwater and tidal areas of the Yellow River Delta. Five fluorescent components of soil DOM (two humic-like DOM, two protein-like DOM, and one possible contaminant) were identified by parallel factor analysis and further confirmed by comparison with an online database. Concentration, spectroscopic properties, and sources of soil DOM and its components differed between freshwater and tidal areas. DOM concentration was much higher in freshwater areas than in tidal areas. In freshwater areas, soil DOM was mainly derived from phytoplankton and microorganisms, while in tidal areas, it was mainly derived from microorganisms and human activities. These differences in DOM between both areas were strongly driven by environmental factors, especially soil carbon (C), nitrogen (N), and its stoichiometric ratio C/N. These explained 80.7% and 69.6% of variations in DOM and CDOM, respectively. In addition, phytoplankton also contributed to soil DOM, CDOM, and fluorescent components C1–C4 as identified by significant positive correlations between them. The results imply that in the Yellow River Delta, both the concentration and composition of soil DOM are strongly driven by soil properties and phytoplankton density.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom