z-logo
open-access-imgOpen Access
Protein Intake to Maximize Whole-Body Anabolism during Postexercise Recovery in Resistance-Trained Men with High Habitual Intakes is Severalfold Greater than the Current Recommended Dietary Allowance
Author(s) -
Michael Mazzulla,
Sidney Abou Sawan,
Eric Williamson,
Sarkis J. Hannaian,
Kimberly A. Volterman,
Daniel W. D. West,
Daniel R. Moore
Publication year - 2020
Publication title -
the journal of nutrition/the journal of nutrition
Language(s) - English
Resource type - Journals
eISSN - 1541-6100
pISSN - 0022-3166
DOI - 10.1093/jn/nxz249
Subject(s) - anabolism , phenylalanine , protein metabolism , endocrinology , protein catabolism , creatinine , chemistry , medicine , urea , protein degradation , ingestion , amino acid , nitrogen balance , urine , excretion , catabolism , zoology , metabolism , biochemistry , biology , organic chemistry , nitrogen
Background Dietary protein supports resistance exercise–induced anabolism primarily via the stimulation of protein synthesis rates. The indicator amino acid oxidation (IAAO) technique provides a noninvasive estimate of the protein intake that maximizes whole-body protein synthesis rates and net protein balance. Objective We utilized IAAO to determine the maximal anabolic response to postexercise protein ingestion in resistance-trained men. Methods Seven resistance-trained men (mean ± SD age 24 ± 3 y; weight 80 ± 9 kg; 11 ± 5% body fat; habitual protein intake 2.3 ± 0.6 g·kg−1·d−1) performed a bout of whole-body resistance exercise prior to ingesting hourly mixed meals, which provided a variable amount of protein (0.20–3.00 g·kg−1·d−1) as crystalline amino acids modeled after egg protein. Steady-state protein kinetics were modeled with oral l-[1-13C]-phenylalanine. Breath and urine samples were taken at isotopic steady state to determine phenylalanine flux (PheRa), phenylalanine excretion (F13CO2; reciprocal of protein synthesis), and net balance (protein synthesis − PheRa). Total amino acid oxidation was estimated from the ratio of urinary urea and creatinine. Results Mixed model biphasic linear regression revealed a plateau in F13CO2 (mean: 2.00; 95% CI: 1.62, 2.38 g protein·kg−1·d−1) (r2 = 0.64; P ˂ 0.01) and in net balance (mean: 2.01; 95% CI: 1.44, 2.57 g protein·kg−1·d−1) (r2 = 0.63; P ˂ 0.01). Ratios of urinary urea and creatinine concentrations increased linearly (r = 0.84; P ˂ 0.01) across the range of protein intakes. Conclusions A breakpoint protein intake of ∼2.0 g·kg−1·d−1, which maximized whole-body anabolism in resistance-trained men after exercise, is greater than previous IAAO-derived estimates for nonexercising men and is at the upper range of current general protein recommendations for athletes. The capacity to enhance whole-body net balance may be greater than previously suggested to maximize muscle protein synthesis in resistance-trained athletes accustomed to a high habitual protein intake. This trial was registered at clinicaltrials.gov as NCT03696264.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here