Mapping structure and morphology of amorphous organic thin films by 4D-STEM pair distribution function analysis
Author(s) -
Xiaoke Mu,
Andrey Mazilkin,
Christian Sprau,
Alexander Colsmann,
Christian Kübel
Publication year - 2019
Publication title -
microscopy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.545
H-Index - 52
eISSN - 2050-5701
pISSN - 2050-5698
DOI - 10.1093/jmicro/dfz015
Subject(s) - organic solar cell , materials science , organic semiconductor , scanning transmission electron microscopy , amorphous solid , pair distribution function , phase (matter) , transmission electron microscopy , polymer , nanotechnology , optoelectronics , chemistry , crystallography , composite material , physics , organic chemistry , quantum mechanics
Imaging the phase distribution of amorphous or partially crystalline organic materials at the nanoscale and analyzing the local atomic structure of individual phases has been a long-time challenge. We propose a new approach for imaging the phase distribution and for analyzing the local structure of organic materials based on scanning transmission electron diffraction (4D-STEM) pair distribution function analysis (PDF). We show that electron diffraction based PDF analysis can be used to characterize the short- and medium-range order in aperiodically packed organic molecules. Moreover, we show that 4D-STEM-PDF does not only provide local structural information with a resolution of a few nanometers, but can also be used to image the phase distribution of organic composites. The distinct and thickness independent contrast of the phase image is generated by utilizing the structural difference between the different types of molecules and taking advantage of the dose efficiency due to use of the full scattering signal. Therefore, this approach is particularly interesting for imaging unstained organic or polymer composites without distinct valence states for electron energy loss spectroscopy. We explore the possibilities of this new approach using [6,6]-phenyl-C61- butyric acid methyl ester (PC61BM) and poly(3-hexylthiophene-2,5-diyl) (P3HT) as the archetypical and best-investigated semiconductor blend used in organic solar cells, compare our phase distribution with virtual dark-field analysis and validate our approach by electron energy loss spectroscopy.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom