Lorentz microscopy observation of vortices in high-Tcsuperconductors using a 1-MV field emission transmission electron microscope
Author(s) -
Ken Harada
Publication year - 2013
Publication title -
microscopy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.545
H-Index - 52
eISSN - 2050-5701
pISSN - 2050-5698
DOI - 10.1093/jmicro/dft013
Subject(s) - superconductivity , transmission electron microscopy , physics , electron microscope , vortex , field (mathematics) , electron , microscope , condensed matter physics , atomic physics , optics , nuclear physics , mathematics , pure mathematics , thermodynamics
Lorentz microscopy has opened the door to observing a single quantized magnetic flux line (i.e. a vortex) and its dynamic behavior inside a superconductor in real time. It resulted from the efforts of Dr Akira Tonomura and his collaborators, who developed a field emission electron microscope and advanced the technologies used for visualizing vortices (e.g. a low-temperature specimen stage and a magnetic-field application system). They used a 1-MV field emission transmission electron microscope with an electron beam that can penetrate thick specimens of high-temperature superconductors (Bi2Sr2CaCu2O8+δ and YB2C3O7-δ) to reveal the flux-line features inside materials and their interactions with defects. This memorial paper reviews the results of research in the area of vortex matter physics.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom