Protein–lipid interplay at the neuromuscular junction
Author(s) -
Nigel Unwin
Publication year - 2021
Publication title -
microscopy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.545
H-Index - 52
eISSN - 2050-5701
pISSN - 2050-5698
DOI - 10.1093/jmicro/dfab023
Subject(s) - torpedo , postsynaptic potential , acetylcholine receptor , ion channel , lipid bilayer , transmembrane protein , microbiology and biotechnology , nicotinic acetylcholine receptor , neurotransmitter receptor , biophysics , postsynaptic density , membrane protein , neuromuscular junction , biology , chemistry , neuroscience , membrane , receptor , biochemistry
Many new structures of membrane proteins have been determined over the last decade, yet the nature of protein–lipid interplay has received scant attention. The postsynaptic membrane of the neuromuscular junction and Torpedo electrocytes has a regular architecture, opening an opportunity to illuminate how proteins and lipids act together in a native membrane setting. Cryo electron microscopy (Cryo-EM) images show that cholesterol segregates preferentially around the constituent ion channel, the nicotinic acetylcholine receptor, interacting with specific sites in both leaflets of the bilayer. In addition to maintaining the transmembrane α-helical architecture, cholesterol forms microdomains – bridges of rigid sterol groups that link one channel to the next. This article discusses the whole protein–lipid organization of the cholinergic postsynaptic membrane, its physiological implications and how the observed details relate to our current concept of the membrane structure. I suggest that cooperative interactions, facilitated by the regular protein–lipid arrangement, help to spread channel activation into regions distant from the sites of neurotransmitter release, thereby enhancing the postsynaptic response.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom